Analisi Matematica B

* * *

Prova scritta del 7 settembre 2017 Risoluzione degli esercizi

Esercizio 1

Consideriamo l'insieme compatto

$$C := \{(\theta, \rho) \mid \theta \in [0, \pi/4], \ \rho \in [1, 2/\cos\theta] \}$$

e la (2,2)-parametrizzazione regolare $\varphi:C\to\mathbb{R}^2$ definita da

$$\varphi(\theta, \rho) := (\rho \cos \theta, \rho \sin \theta), \qquad (\theta, \rho) \in C.$$

Allora si ha $E=\varphi(C)$ e quindi, per la formula dell'area e per il teorema di Fubini:

$$\int_{E=\varphi(C)} x^2 y \, dx dy = \int_C \rho^2 \cos^2 \theta \, \rho \sin \theta \, \rho \, d\theta d\rho$$

$$= \int_0^{\pi/4} \left(\int_1^{2/\cos \theta} \rho^4 \cos^2 \theta \sin \theta \, d\rho \right) d\theta$$

$$= \frac{1}{5} \int_0^{\pi/4} \cos^2 \theta \sin \theta \, (\rho^5)_{\rho=1}^{\rho=2/\cos \theta} d\theta$$

$$= -\frac{1}{5} \int_0^{\pi/4} [32 \cos^{-3} \theta - \cos^2 \theta] (D \cos)(\theta) \, d\theta$$

$$= -\frac{1}{5} \int_0^{\pi/4} D \left(-16 \cos^{-2} \theta - \frac{1}{3} \cos^3 \theta \right) \, d\theta$$

$$= -\frac{1}{5} \left(-32 - \frac{1}{6\sqrt{2}} + 16 + \frac{1}{3} \right)$$

$$= \frac{47}{15} + \frac{\sqrt{2}}{60}.$$

Esercizio 2

Consideriamo il campo di vettori

$$F(x,y) := (-y,x), \qquad (x,y) \in \mathbb{R}^2.$$

Allora, per la formula di Green, si ha

$$\int_{\partial E} F \cdot \tau \, d\mathcal{H}^1 = \int_E (D_1 F_2 - D_2 F_1) d\mathcal{L}^2 = 2\mathcal{L}^2(E)$$

dove con τ abbiamo indicato il campo tangente unitario che orienta ∂E positivamente. Ne segue che

$$2\mathcal{L}^{2}(E) = \int_{C_{1}} F \cdot \tau \, d\mathcal{H}^{1} + \int_{C_{2}} F \cdot \tau \, d\mathcal{H}^{1}.$$

Osserviamo che per ogni $(x,y) \in C_2$ si ha

$$F(x,y) \cdot \tau(x,y) = (0,x) \cdot (-1,0) = 0$$

e quindi

$$\begin{split} 2\mathcal{L}^2(E) &= \int_{C_1} F \cdot \tau \, d\mathcal{H}^1 \\ &= \int_0^{2\pi} F(\gamma(t)) \cdot \gamma'(t) \, dt \\ &= \int_0^{2\pi} \left(-t \sin t, t \cos t \right) \cdot \left(\cos t - t \sin t, \sin t + t \cos t \right) dt \\ &= \int_0^{2\pi} -t \sin t \cos t + t^2 \sin^2 t + t \cos t \sin t + t^2 \cos^2 t \\ &= \int_0^{2\pi} t^2 dt \\ &= \frac{8}{3} \pi^3 \end{split}$$

cioè

$$\mathcal{L}^2(E) = \frac{4}{3}\pi^3.$$

Esercizio 3

Convergenza puntuale. Si ha

$$\lim_{n \to +\infty} f_n(x) = \begin{cases} 0 & \text{se } x < 1\\ 1 & \text{se } x = 1\\ +\infty & \text{se } x > 1. \end{cases}$$

Quindi l'insieme di convergenza puntuale è $(-\infty, 1]$ e il limite puntuale della successione assegnata è dato dalla funzione $f: (-\infty, 1] \to \mathbb{R}$ così definita

$$f(x) := \begin{cases} 0 & \text{se } x < 1 \\ 1 & \text{se } x = 1. \end{cases}$$

Convergenza L^{∞} . Osserviamo subito che se $a \in (-\infty,1)$ allora la successione non può convergere uniformemente sugli insiemi del tipo [a,1], in quanto (per n sufficientemente grande) $f_n|_{[a,1]}$ è continua, mentre il suo limite puntuale $f|_{[a,1]}$ non lo è. Pertanto la successione non può convergere in $L^{\infty}([a,1])$. A maggior ragione essa non può convergere in $L^{\infty}((-\infty,1])$. Rimane da chiarire se la successione converga in $L^{\infty}((-\infty,b])$ con $-\infty < b < 1$ oppure in $L^{\infty}([a,b])$ con $-\infty < a < b < 1$. A questo scopo procediamo allo studio della funzione f_n .

Osserviamo che f_n è derivabile in ogni $x \neq -e^n$ e si ha

$$f'_n(x) = \frac{ne^{nx}(x+e^n) - e^{nx}}{(x+e^n)^2} = \frac{n(x+e^n) - 1}{(x+e^n)^2}e^{nx}$$

che si annulla nel punto $x_n := -e^n + 1/n$. Allora f_n ha le seguenti proprietà:

• In $(-\infty, -e^n)$ è negativa, decrescente e si ha

$$\lim_{x \to -\infty} f_n(x) = 0, \quad \lim_{x \to -e^{-n} = 0} f_n(x) = -\infty;$$

- In $(-e^n, +\infty)$ è positiva. Inoltre essa è
 - decrescente in $(-e^n, x_n]$, con

$$\lim_{x \to -e^{-n} + 0} f_n(x) = +\infty;$$

- crescente in $[x_n, +\infty)$, con

$$\lim_{x \to +\infty} f_n(x) = +\infty.$$

Da queste proprietà segue ora che:

• Se $-\infty < b < 1$, allora

$$||f_n - f||_{\infty,(-\infty,b]} = ||f_n||_{\infty,(-\infty,b]} = +\infty$$

per n sufficientemente grande. Quindi la successione non converge in $L^{\infty}((-\infty,b]);$

 \bullet Se $-\infty < a < b < 1,$ dato che x_n converge a $-\infty$ si avrà che $x_n < a$ per n sufficientemente grande. Quindi

$$||f_n - f||_{\infty,[a,b]} = ||f_n||_{\infty,[a,b]} = f_n(b)$$

per n sufficientemente grande. Se ne conclude che

$$\lim_{n \to +\infty} ||f_n - f||_{\infty, [a, b]} = \lim_{n \to +\infty} f_n(b) = f(b) = 0$$

e cioè che la successione converge in $L^\infty([a,b])$.