Prova scritta di

ANALISI MATEMATICA B per il Corso di Laurea in Matematica ${\rm AA} \ 2020/2021$

9 giugno 2021 - I appello

* * *

Risoluzione degli esercizi

1. Sia E l'insieme dei punti $(x, y, z) \in \mathbb{R}^3$ tali che

$$z = y\sqrt{3}$$
, $x^2 + y^2 + z^2 < 4$, $z > 0$,

e si consideri il campo vettoriale

$$F(x, y, z) := (0, x, 0), \quad (x, y, z) \in \mathbb{R}^3.$$

- Rappresentare graficamente E;
- Verificare la validità della formula di Stokes

(1)
$$\int_{(E,\nu)} \operatorname{rot} F = \int_{(\partial E,\tau)} F$$

scegliendo a piacere l'orientazione (fra le due possibili).

[I due integrali in (1)]

Risoluzione. Scegliamo, per esempio, l'orientazione associata al campo normale ν ad E avente la terza componente positiva. Poiché E è contenuto nel piano $z=y\sqrt{3}$, si vede subito che

$$\nu \equiv \left(0, -\frac{\sqrt{3}}{2}, \frac{1}{2}\right).$$

Inoltre

rot
$$F \equiv (0, 0, 1)$$
.

Dopo aver osservato che E è un semidisco il raggio di 2, possiamo calcolare molto facilmente il primo membro di (1):

$$\int_{(E,\nu)} \text{rot } F = \int_E (\text{rot } F) \cdot \nu \, dH^2 = \int_E \frac{1}{2} \, dH^2 = \frac{H^2(E)}{2} = \pi.$$

Prepariamoci infine a calcolare il secondo membro di (1), osservando prima di tutto che ∂E è una curva regolare a tratti con due tratti regolari: il segmento

 $S:=[-2,2]\times\{(0,0)\}$ e una semicir
conferenza C di cui ricaveremo ora la parametrizzazione compatibile con l'orientazione indotta da ν . Considerando la seguente base ortonormale del piano $z=y\sqrt{3}$

$$e_1 = (1, 0, 0), \quad e_2 = (0, 1/2, \sqrt{3}/2),$$

è facile convincersi che una tale parametrizzazione di C è data da

$$\gamma(t) = 2(\cos t)e_1 + 2(\sin t)e_2 = (2\cos t, \sin t, \sqrt{3}\sin t), \quad t \in [0, \pi].$$

Siamo ora in grado di calcolare il secondo membro di (1). Infatti si ha

$$\int_C F \cdot \tau \, dH^1 = \int_0^{\pi} F(\gamma(t)) \cdot \gamma'(t) \, dt$$

$$= \int_0^{\pi} (0, \gamma_1(t), 0) \cdot (\gamma_1'(t), \gamma_2'(t), \gamma_3'(t)) \, dt$$

$$= \int_0^{\pi} \gamma_1(t) \gamma_2'(t) \, dt = 2 \int_0^{\pi} \cos^2 t \, dt$$

$$= \pi$$

 \mathbf{e}

$$\int_{S} F \cdot \tau \, dH^{1} = \int_{S} (0, x, 0) \cdot (1, 0, 0) \, dH^{1}(x, y, z) = 0.$$

Quindi

$$\int_{(\partial E,\tau)} F = \int_{\partial E} F \cdot \tau \, dH^1 = \int_C F \cdot \tau \, dH^1 + \int_S F \cdot \tau \, dH^1 = \pi.$$

2. Sia E la regione piana costituita dai punti $(x,y)\in(0,+\infty)\times(0,+\infty)$ tali che

$$4 \le x^2 + y^2 \le 9$$
, $x \le y \le x + 1$.

- Rappresentare graficamente l'insieme $E \times [0, 2]$;
- Calcolare l'integrale

$$\int_{E \times [0,2]} (x+y)z \, dL^3(x,y,z).$$

Risoluzione. Applicando il teorema di Fubini (sezioni piane parallele al piano xy), si ottiene

(2)
$$\int_{E \times [0,2]} (x+y)z \, dL^3(x,y,z) = \int_{[0,2]} \left(\int_E (x+y)z \, dL^2(x,y) \right) dL^1(z)$$

$$= \int_0^2 z \left(\int_E (x+y) \, dL^2(x,y) \right) dz.$$

Per calcolare

$$I := \int_E (x+y) \, dL^2(x,y)$$

utilizzeremo un cambiamento di variabile. Osserviamo che E coincide con l'insieme delle soluzioni $(x,y) \in (0,+\infty) \times (0,+\infty)$ del sistema

$$\begin{cases} x^2 + y^2 = s \\ y - x = t \end{cases}$$

al variare di (s,t) in $R:=[4,9]\times[0,1]$. Ora è facile invertire tale sistema e ottenere

$$\begin{cases} x = \frac{\sqrt{2s-t^2}-t}{2} \\ y = \frac{\sqrt{2s-t^2}+t}{2}. \end{cases}$$

Ciò prova che $E = \varphi(R)$, con $\varphi: R \to (0, +\infty) \times (0, +\infty)$ definito come segue

$$\varphi(s,t) := \left(\frac{\sqrt{2s-t^2}-t}{2}, \frac{\sqrt{2s-t^2}+t}{2}\right)^t.$$

Osserviamo che φ è di classe C^1 ed è facile verificare che essa è anche iniettiva. Inoltre si ha

$$D\varphi(s,t) = \begin{pmatrix} \frac{1}{2\sqrt{2s-t^2}} & \frac{-t}{2\sqrt{2s-t^2}} - \frac{1}{2} \\ \frac{1}{2\sqrt{2s-t^2}} & \frac{-t}{2\sqrt{2s-t^2}} + \frac{1}{2} \end{pmatrix}$$

da cui

$$J\varphi(s,t) = \frac{1}{2\sqrt{2s-t^2}}.$$

Quindi φ è una (2,2)-parametrizzazione regolare e dalla formula dell'area otteniamo allora

$$\begin{split} I &= \int_{E=\varphi(R)} (x+y) \, dL^2(x,y) \\ &= \int_R \left(\frac{\sqrt{2s-t^2}-t}{2} + \frac{\sqrt{2s-t^2}+t}{2} \right) \frac{1}{2\sqrt{2s-t^2}} \, dL^2(s,t) \\ &= \int_R \frac{1}{2} \, dL^2(s,t) \\ &= \frac{L^2(R)}{2} \end{split}$$

e cioè

$$I = \frac{5}{2}.$$

Da questo risultato e da (2) segue finalmente che

$$\int_{E\times[0,2]}(x+y)z\,dL^3(x,y,z)=\frac{5}{2}\int_0^2z\,dz=5.$$

3. Per ogni $\alpha \in (0, \pi/2]$, sia $f_{\alpha} : \mathbb{R} \to \mathbb{R}$ la funzione 2π -periodica tale che

$$f_{\alpha}(x) = \begin{cases} (\pi/2)^{1/2} & \text{se } x \in (-\pi, 0) \\ x\alpha^{-1/2}/2 & \text{se } x \in [0, 2\alpha] \\ (x - \alpha)^{1/2} & \text{se } x \in (2\alpha, \pi]. \end{cases}$$

Inoltre sia

$$f_0 := \lim_{\alpha \to 0+} f_{\alpha}$$
 (limite puntuale).

- Disegnare il grafico di f_{α} , per $\alpha \in [0, \pi/2]$;
- Descrivere le proprietà di convergenza della serie di Fourier di f_{α} , al variare di $\alpha \in [0, \pi/2]$ (motivare le affermazioni).

Risoluzione. Osserviamo che:

(1) Per $\alpha \in [0, \pi/2]$, sia D_{α} l'insieme dei punti di discontinuità di f_{α} in $[-\pi, \pi)$. Allora:

- Se
$$\alpha \in [0, \pi/2)$$
, si ha $D_{\alpha} = \{-\pi, 0\}$ e
$$f_{\alpha}(-\pi - 0) = (\pi - \alpha)^{1/2}, \quad f_{\alpha}(-\pi + 0) = \left(\frac{\pi}{2}\right)^{1/2},$$

$$f_{\alpha}(0 - 0) = \left(\frac{\pi}{2}\right)^{1/2}, \quad f_{\alpha}(0 + 0) = 0.$$

- Si ha $D_{\pi/2} = \{0\}$ e

$$f_{\pi/2}(0-0) = \left(\frac{\pi}{2}\right)^{1/2}, \quad f_{\pi/2}(0+0) = 0.$$

Quindi la funzione f_{α} è continua a tratti (e quindi è anche di classe $L^{2}(-\pi,\pi)$), per ogni $\alpha \in [0,\pi/2]$.

(2) Per ogni $\alpha \in (0, \pi/2)$, la funzione f_{α} è derivabile nell'ascissa 2α di "raccordo" fra il secondo e il terzo tratto. Infatti f_{α} è continua in 2α e inoltre si ha

$$D_{-}f_{\alpha}(2\alpha) = (D(x\alpha^{-1/2}/2))|_{x=2\alpha} = \alpha^{-1/2}/2$$

e

$$D_+ f_\alpha(2\alpha) = (D((x-\alpha)^{1/2}))|_{x=2\alpha} = \alpha^{-1/2}/2$$

Pertanto f_{α} ha derivata continua e limitata in $[-\pi, \pi) \setminus D_{\alpha}$. Quindi f_{α} è regolare a tratti.

(3) La funzione $f_{\pi/2}$ ha derivata continua e limitata in $[-\pi,\pi)\setminus(\{-\pi\}\cup D_{\pi/2})$. Quindi essa è regolare a tratti.

(4) La funzione f_0 ha derivata illimitata in un intorno destro di 0 e quindi non è regolare a tratti.

Allora:

- Per ogni $\alpha \in [0, \pi/2]$, la serie di Fourier di f_{α} converge a f_{α} in $L^{2}(-\pi, \pi)$ (grazie alla teoria L^{2} della serie di Fourier). Quindi tale serie converge anche puntualmente quasi ovunque a f_{α} (per il teorema di Lusin-Carleson).
- Per ogni $\alpha \in (0, \pi/2)$, la serie di Fourier di f_{α} in x converge a
 - $f_{\alpha}(x), \text{ se } x \notin \pi \mathbb{Z};$ $\frac{1}{2} (\frac{\pi}{2})^{1/2}, \text{ se } x \in 2\pi \mathbb{Z};$ $\frac{1}{2} [(\pi/2)^{1/2} + (\pi \alpha)^{1/2}], \text{ se } x \in \pi + 2\pi \mathbb{Z}.$
- La serie di Fourier di $f_{\pi/2}$ in x converge a
 - $f_{\pi/2}(x)$, se $x \notin 2\pi \mathbb{Z}$; - $\frac{1}{2}(\frac{\pi}{2})^{1/2}$, se $x \in 2\pi \mathbb{Z}$.
- Per ogni $\alpha \in (0, \pi/2)$, la serie di Fourier di f_{α} converge uniformemente a f_{α} negli insiemi del tipo $\mathbb{R} \setminus ((-\varepsilon, \varepsilon) + \pi \mathbb{Z})$, con $\varepsilon > 0$.
- La serie di Fourier di $f_{\pi/2}$ converge uniformemente a $f_{\pi/2}$ negli insiemi del tipo $\mathbb{R} \setminus ((-\varepsilon, \varepsilon) + 2\pi\mathbb{Z})$, con $\varepsilon > 0$.