Prova scritta di

ANALISI MATEMATICA B per il Corso di Laurea in Matematica AA 2020/2021

9 giugno 2021 - I appello

1. Sia E l'insieme dei punti $(x, y, z) \in \mathbb{R}^3$ tali che

$$z = y\sqrt{3}$$
, $x^2 + y^2 + z^2 < 4$, $z > 0$.

Inoltre si consideri il campo vettoriale

$$F(x, y, z) := (0, x, 0), (x, y, z) \in \mathbb{R}^3.$$

- Rappresentare graficamente E;
- Verificare la validità della formula di Stokes

$$\int_{(E,\nu)} \operatorname{rot} F = \int_{(\partial E,\tau)} F$$

scegliendo a piacere l'orientazione (fra le due possibili).

2. Sia E la regione piana costituita dai punti $(x,y) \in (0,+\infty) \times (0,+\infty)$ tali che

$$4 < x^2 + y^2 < 9$$
, $x < y < x + 1$.

- Rappresentare graficamente l'insieme $E \times [0, 2]$;
- Calcolare l'integrale

$$\int_{E \times [0,2]} (x+y)z \, dL^3(x,y,z).$$

3. Per ogni $\alpha\in(0,\pi/2],$ sia $f_\alpha:\mathbb{R}\to\mathbb{R}$ la funzione $2\pi\text{-periodica}$ tale che

$$f_{\alpha}(x) = \begin{cases} (\pi/2)^{1/2} & \text{se } x \in (-\pi, 0) \\ x\alpha^{-1/2}/2 & \text{se } x \in [0, 2\alpha] \\ (x - \alpha)^{1/2} & \text{se } x \in (2\alpha, \pi]. \end{cases}$$

Inoltre sia

$$f_0 := \lim_{\alpha \to 0+} f_{\alpha}$$
 (limite puntuale).

- Disegnare il grafico di f_{α} , per $\alpha \in [0, \pi/2]$;
- Descrivere le proprietà di convergenza della serie di Fourier di f_{α} , al variare di $\alpha \in [0, \pi/2]$ (motivare le affermazioni);