
MATHEMATICAL PERSPECTIVES

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 45, Number 1, January 2008, Pages 135–152
S 0273-0979(07)01182-2
Article electronically published on October 30, 2007

MATHEMATICS AND PHYSICS

PETER D. LAX

Mathematics and physics are different enterprises: physics is looking for laws of
nature, mathematics is trying to invent the structures and prove the theorems of
mathematics. Of course these structures are not invented out of thin air but are
linked, among other things, to physics.

In this lecture I shall discuss a number of instances where mathematicians have
come to the aid of physics and striking examples where physicists have suggested
new problems and new subjects for mathematical investigations. Many of these
have a bearing on the real world.

The relation of mathematics and physics is a natural topic for a Gibbs Lecture;
at least two previous lectures, by Freeman Dyson and by Edward Witten, were
devoted to it.

I start with five famous quotes:

“Nature not only suggests to us problems, she suggests their solution.”
—Henri Poincaré

“The human mind has never invented a labor-saving device equal to algebra.”
—J. Willard Gibbs

“I didn’t become a mathematician because mathematics was so full of beautiful
and difficult problems that one might waste one’s power in pursuing them without
finding the central question.” —Albert Einstein

“The miracle of the appropriateness of the language of mathematics for the
formulation of the laws of physics is a wonderful gift which we neither understand
nor deserve.” —Eugene Wigner

“Mathematics is trivial, but I can’t do my work without it.” —Richard Feynman
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I suspect that most mathematicians disagree with Einstein: for us there is no
central question, except the one we happen to be working on.

I will choose most of my examples from the 19th and 20th centuries, but I
will start with several from earlier times. First, the greatest scientist of antiquity,
Archimedes, who was also its greatest mathematician.

Skipping ahead quite a number of centuries, we come to Galileo, who was mostly
an observational and experimental physicist but who had a deep appreciation of
mathematics. He wrote: “The great book of Nature lies ever open before our
eyes and the true philosophy is written in it....But we cannot read it unless we
have first learned the language and the characters in which it is written....It is
written in mathematical language and the characters are triangles, circles, and
other geometrical figures.”

Today we would add the derivative and the integral to that list of characters.
Kepler, Galileo’s great contemporary, was the first to describe correctly the laws

governing the planetary system. He not only determined accurately the shape of
the orbits of planets as elliptical, with the Sun at their focus but also discovered the
equal area rule and the relation of the size of the orbits of planets to their period.
These planetary laws played a crucial role in validating Newton’s laws of motion
and gravitation.

Kepler was an outstanding mathematician as well as a physicist. He had inter-
esting notions on the theory of volume. A conjecture he made about the densest
packing of balls in three-dimensional space is still the subject of research.

There were two great inventions at the time of Galileo and Kepler: the telescope,
which revolutionized observational astronomy; and the base ten logarithm, invented
by Briggs, and independently by Burgi, an associate of Kepler, which revolutionized
scientific calculation. Kepler immediately recognized that the use of logarithms
freed scientists from the painful task of multiplication and division and the pitfall
of numerical errors.

The distinguished historian Otto Neugebauer wrote in “Notes on Kepler” that
“the number of trivial computing errors in Kepler’s writings is enormous.” Amaz-
ingly, the final answer was always correct.

The younger generation is probably unaware how important base ten logarithms
were in the past. Most mathematics books published before 1950 had such a log
table appended in the back. Self-respecting engineers always had their slide rules
with them. It is therefore understandable but bizarre that until recently most
pocket calculators had a built-in program to evaluate base ten logarithms.

Kepler’s vision went beyond mere description; he wrote: “My goal is to show that
the heavenly machine is not a kind of divine living being but similar to a clockwork
insofar as all the manifold motions are taken care of by one single, absolutely
simple magnetic bodily force, as in a clockwork all motion is taken care of by a
single weight.”

Kepler was both the first modern scientist and the last medieval one. His scien-
tific outlook was tinged with a mysticism that is well described in Arthur Koestler’s
book The Sleepwalkers.

Kepler’s vision of the solar system as a clockwork was carried to completion
by Newton, the greatest physicist and mathematician of all time. Euler, the sec-
ond greatest mathematician, was also an outstanding physicist; 250 years ago he
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formulated the equations governing the flow of fluids, both compressible and incom-
pressible. Later I shall describe some of the successes we had and the difficulties
we still have in solving them.

It was in the 19th century that the professions of mathematician and physicist
took on their distinctive coloring, but the separation was far from absolute. The
two greatest mathematicians of the century, Gauss and Riemann, both had a deep
interest in physics; one of the magnetic units is named after Gauss.

More than a third of Riemann’s publications were in physics; he was the first
to suggest that the components of the electric field satisfy the wave equation. His
most important contribution to science was laying the foundations for the theory of
propagation of waves in compressible gases. The concepts he introduced—Riemann
invariants, the Riemann initial-value problem, the law of propagation of shock
waves—are still the basic building blocks of the theory. However, he assumed the
flow to be isentropic, and so the shock conditions he derived do not conserve energy.
The correct form was derived by Rankine and Hugoniot.

Most of the leading French mathematicians of the first half of the 19th century—
Lagrange, Laplace, Fourier, Poisson, Cauchy, Liouville—had a deep interest in
physics and made significant contributions to it. For the British the distinction be-
tween mathematician and physicist was not sharp: Green, Airy, Stokes, W. Thom-
son, the Irish Hamilton, Lord Rayleigh can be called either. Rayleigh was the
first mathematician to be honored by a Nobel Prize, in physics, for work he did in
chemistry—the discovery of argon.

The greatest 19th century physicist was Maxwell; he had a thorough training in
mathematics. He discovered the equations governing the propagation of electromag-
netic waves that are named after him. He observed that the speed of propagation
of these waves, based on the values of the physical constants entering the theory,
agrees closely with the measured value of the speed of propagation of light. He
concluded that light is an electromagnetic phenomenon. Apparently this was a sur-
prise, for he pointed out that the experiments measuring the velocity of light made
no use whatsoever of electricity or magnetism and the experiments to measure the
electromagnetic constants made no use of light “except to see the instruments.”

Another great contribution of Maxwell was the kinetic theory of gases. He and
two other great 19th-century figures, Boltzmann and Gibbs, created the science of
statistical mechanics, in which mathematics plays an important role. This being a
Gibbs Lecture, I will now describe the contributions of Gibbs to mathematics.

The most important of these is the Gibbs phenomenon for Fourier series. The
origin of this discovery is very peculiar. Albert Michelson (whose discovery about
the speed of light played such an important role in the special theory of relativity)
wrote a brief note in Nature (1898) about the manner in which a sequence of
discontinuous functions approximates a continuous function. He gave as an example
the function defined as f(x) = x on the interval −π < x < π and continued
periodically with period 2π for all x and asked how it can be the limit of the partial
sums of its Fourier series.

Gibbs perceived that Michelson had mixed up the concepts of the graph of the
limit and the limit of the graphs of the approximating functions. In a note in Nature
(December 29, 1898), he pointed out that the graph of the limit of the partial sums
of the Fourier series of f consists of an infinitude of 45-degree lines (see Figure 1),
whereas the limit of the graphs contains, in addition to the 45-degree lines, vertical
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Figure 2.

lines connecting the points where the function is discontinuous (see Figure 2). In a
subsequent note in Nature (April 27, 1899), Gibbs wrote:

“I apologize for a careless error which I made in describing the limiting form of
the family of curves represented by the equations

y = 2(sin x − 1/2 sin 2x . . . +1/n sin nx)

as a zigzag line consisting of alternate inclined and vertical portions. The inclined
portions were correctly given, but the vertical portions which are bisected by the
x axis extend beyond the points where they meet the inclined portions, their total
length being expressed by four times the definite integral sinu/u du.”

This is all Gibbs ever published on the subject.
Figure 3 is the graph of the nth partial sum for n = 10, 50 and 100; clearly, the

vertical portion of the limit of their graphs extends beyond the inclined portions.
The Gibbs phenomenon produces large errors when the so-called spectral method

is used to compute solutions of partial differential equations, using the partial sums
of their Fourier series, when these solutions contain discontinuities. Fortunately, as
David Gottlieb and his collaborators have shown, these errors can be eliminated by
a suitable post-processing.

Gibbs’s other contribution to mathematics was the development of modern vector
analysis. His lectures on the subject were never published but circulated as lecture
notes sufficiently widely to draw the fire of the old guard, who based vector algebra
on quaternions, as follows:

Given two vectors X and U in three-dimensional space,

X = (x, y, z), U = (u, v, w)
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Figure 3.

form the quaternions ix + jy + kz and iu + jv + kw with zero real part and take
their quaternionic product −s + ip + jq + kr. Then s is identified as the scalar
product of X and U , and (p, q, r) is their vector product X × U .

Gibbs thought quaternions were irrelevant to vector analysis and felt obliged to
defend his view against attacks. In a note in Nature, pp. 511–513, April 2, 1891,
he wrote:

“The following passage, which has recently come to my notice, in the preface to
the third edition of Prof. Tait’s Quaternions seems to call for some reply:

‘Even Prof. Willard Gibbs must be ranked as one of the retarders of quaternion
progress, in virtue of his pamphlet on Vector Analysis, a sort of hermaphroditic
monster, compounded of the notation of Hamilton and Grassmann.’

“It seems to be assumed that a departure from quaternionic usage in the treat-
ment of vectors is an enormity. If this assumption is true, it is an important truth;
if not, it would be unfortunate if it should remain un-challenged, especially when
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supported by so high an authority. The criticism relates particularly to notation,
but I believe that there is a deeper question of notions underlying that of notations.
Indeed, if my offence had been solely in the matter of notation, it would have been
less accurate to describe my production as a monstrosity, than to describe its dress
as uncouth.”

Gibbs then goes on to give a spirited defense of his presentation of vector analysis.
This was not the end, for two years later he felt obliged to publish another note in
Nature, pp. 364–367, Aug. 17, 1893:

“In a paper by Prof. C. G. Knott on ‘Recent Innovations in Vector Theory’, of
which an abstract has been given in Nature (vol. XLVII, pp. 590–593), the doctrine
that the quaternion affords the only sufficient and proper basis for vector analysis
is maintained by arguments based so largely on the faults and deficiencies which
the author has found in my pamphlet, Elements of Vector Analysis, as to give these
faults an importance which they would not otherwise possess.

“The charge which most requires a reply...is that in the development of dyadic
notation, Prof. Gibbs, being forced to bring the quaternion in, logically condemns
his own position.”

Gibbs then goes on to demolish, politely, Prof C. G. Knott.
In the 20th century statistical mechanics acquired a double life as part of math-

ematics as well as of physics. For instance, Hilbert studied the derivation of the
equations of gas dynamics from the Boltzmann equation. This double life has been
extremely fruitful for the subject; I give a few examples.

Boltzmann, in order to justify the equality of time-averages and averages over
phase-space, had formulated the ergodic hypothesis. In 1931 von Neumann and
G. D. Birkhoff proved the mean and the pointwise ergodic theorems. These theo-
rems turned out to be basic in many parts of analysis; von Neumann regarded it
as one of his finest accomplishments. However, Jack Schwartz argues persuasively
in a witty article, “The pernicous influence of mathematics on science”, that the
ergodic theorems are irrelevant for statistical mechanics:

Schwartz points out that both ergodic theorems assume that the flow is “met-
rically transitive”, which means that phase-space cannot be divided into two non-
trivial parts that are not connected by the flow. This hypothesis is very difficult
to verify and has never been verified for flows that are of interest in statistical
mechanics; one of the difficulties is that the hypothesis may very well be false.

On the other hand, Schwartz points out that if true, the ergodic property would
show the equality of the time-averages along trajectories with phase-averages of all
continuous functions in phase-space. This is much more than what is needed; in
statistical mechanics we are not interested in every continuous function, only in
those that have thermodynamic significance. These are very special functions, with
a high degree of symmetry, and the equality of their time-average and phase-space
average is due to their special form.

A striking example where mathematics has helped statistical mechanics had
its origin in Onsager’s study of the Ising model. Onsager showed that the spin
correlation function of an N × N lattice is given by the determinant of an N × N
Toeplitz matrix. Of interest is the thermodynamic limit as N tends to infinity.
One of Onsager’s colleagues at Yale, Kakutani, knew that the world’s greatest
expert on the determinants of Toeplitz matrices was Gabor Szegö at Stanford and
communicated the problem to him. Indeed Szegö succeeded in deriving the desired
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asymptotic result, published in 1952 under the title “On certain Hermitean forms
associated with the Fourier series of positive functions”. An article by Barry McCoy
in the collected works of Szegö has a fascinating discussion of the mathematical and
physical ramifications of this subject.

A very recent example of the double life of statistical mechanics is Stochastic
Loewner Evolution (SLE), used in two-dimensional statistical physics models. For
this work Gregory Lawler, Oded Schramm and Wendelin Werner were honored
by a Polya Prize in 2006, and Wendelin Werner received a Fields Medal for his
contributions to this subject. The remarkable thing is that Loewner had invented
his differential equation describing the deformation of one-parameter conformal
maps as a tool for studying the Bieberbach conjecture, a somewhat esoteric subject.
He succeeded in proving that the absolute value of the third Taylor coefficient of
univalent functions does not exceed 3. The Loewner differential equation was an
important ingredient as well in de Branges’ proof of the conjecture for all Taylor
coefficients. How about this as an example of “the unreasonable effectiveness of
mathematics in the physical sciences”?

The 20th century was racked by a series of revolutions in physics, with profound
influences on mathematics. Einstein’s general theory of relativity was one; in the
preface of his basic paper on the subject, Einstein credits Minkowski, as well as
Gauss, Riemann, Christoffel, Ricci and Levi Civita, with laying the foundations
on which he built his theory. The astrophysical consequences of the general theory
were based on special solutions of the Einstein equations. A general existence theory
of solutions is the subject of lively research today; see for instance recent work of
Demetrios Christodoulou and Sergiu Klainerman.

The most profound upheaval in physics has been the creation of quantum me-
chanics; it attracted many mathematicians: Hermann Weyl, von Neumann,
Friedrichs, later Kato, and Freeman Dyson among others. It was Weyl who helped
Schrödinger calculate the eigenvalues of the Schrödinger operator for the hydro-
gen atom; these agreed with the spectral lines of hydrogen, an important piece of
evidence for the validity of Schrödinger’s theory.

Friedrichs once told me of a chance encounter with Heisenberg in the sixties. He
took the opportunity to express to Heisenberg the profound gratitude of mathemati-
cians for his having created a subject that has led to so much beautiful mathemat-
ics. Heisenberg allowed that this was so; Friedrichs then added that mathematics
has, to some extent, repaid this debt. Heisenberg was noncommittal, so Friedrichs
pointed out that it was a mathematician, von Neumann, who clarified the difference
between a selfadjoint operator and one that was merely symmetric. “What’s the
difference?” said Heisenberg.

The distinguished physicist Eugene Wigner, a close friend of von Neumann since
their high school days, had a lifetime love affair with mathematics and made many
contributions to it. He made use of group theory to deal with problems of quantum
mechanics; this led to interesting problems of group representation. Another of
his fruitful ideas was to describe the spectrum of very complicated quantum me-
chanical systems by statistical considerations as the spectrum of a random matrix.
The subject of random matrices is today a very exciting research area, relevant to
seemingly different subjects.

An astounding connection of random matrices to number theory was discovered
in the seventies when Hugh Montgomery lectured at the Institute for Advanced



142 PETER D. LAX

Figure 4. Nearest neighbor spacings among 70 million zeroes be-
yond the 1020th zero of zeta versus µ1 (GUE).

Study at Princeton on a conjecture of his on the distribution of the normalized
zeroes of the Riemann zeta-function. Dyson recognized this distribution as being
the same as the distribution of consecutive eigenvalues of random matrices.

That discovery prompted Andrew Odlycko to investigate numerically the distri-
bution of the spacing of the zeroes of the zeta-function. In the region of the first 70
million zeroes beyond the first 1020 zeroes he found (see Figures 4 and 5) well nigh
perfect agreement with the distribution of the eigenvalues of random matrices!

Early in the 20th century Hilbert and Polya had suggested a way of proving
Riemann’s hypothesis by identifying the zeroes of the zeta-function with eigenvalues
of an operator of the form 1/2I + iS, where S is a selfadjoint operator. That a
random selfadjoint operator would have this property on the average came as a
complete surprise.

I return now to the subject of fluid dynamics, whose roots go back 250 years
to Euler and 150 years to Navier and Stokes. The first definitive result on the
existence of solutions of the initial value problem was due to Jean Leray, who in 1934
obtained sharp results for incompressible Navier-Stokes flows in two dimensions and
tantalizingly incomplete results in three dimensions, where solutions exist, but they
satisfy the equations only in a generalized sense, and their uniqueness is not assured.
Some advances have been made in the intervening 70 years, but they are remarkably
modest. The difficulties are not merely technical, but are probably connected with
the profound mystery of turbulence.
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Figure 5. Pair correlation for zeroes of zeta based on 8 × 106

zeroes near the 1020th zero versus the GUE conjectured density
1 −

(
sin πx

πx

)2
.

The theory of compressible flows is sketchier. In 1965 Jim Glimm succeeded in
showing that for a large class of equations in one space variable, which includes
the Euler equations for compressible flow, the initial-value problem has a solution
for all time, provided that the data are not too large. These solutions contain
discontinuities, shocks; the unique physical solution is characterised by an entropy
condition.

The formation of shocks is the cause of a great deal of information loss. It is a
very interesting problem to give a quantitative estimate for this loss of information
for compressible flow; not much is known about this question.

There is no theory for the initial value problem for compressible flows in two
space dimensions once shocks show up, much less in three space dimensions. This
is a scientific scandal and a challenge. Although there is a good theory for steady
flows in two dimensions around bodies as long as the flow remains subsonic, once
the flow becomes transonic, shocks appear and so do theoretical difficulties.

Just because we cannot prove that compressible flows with prescribed initial
values exist doesn’t mean that we cannot compute them. Computing, a very much
younger sibling of the fraternal twins mathematics and physics, has been flexing its
muscles since birth. Its accomplishments are impressive. For instance, all aircraft
that have entered service in the last ten years have been designed using computers.
The flow at cruising speed around a three-dimensional design can be computed, and
lift and drag calculated. Then the design is changed and the flow is recomputed;
this process is repeated to increase lift and decrease drag. Once a satisfactory
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design is reached, but only then, is a model built and tested in a wind tunnel to
check the calculations.

How much faith can we put in a numerical calculation when we cannot provide
a rigorous proof that the process that produced it converges nor that the flow we
are calculating approximately exists? Performing a physical experiment every time
is not an option. But there are other ways of testing the reliability of numerical
results: use several different numerical methods to calculate approximate solutions
and compare the results. If they are in reasonable agreement, we can be reasonably
sure of the result.

Figures 6–11 present examples of this procedure on one of the standard test prob-
lems, the Riemann initial-value problem in two-dimensional gas dynamics. Here
four different constant states are prescribed in the four quadrants of the x,y plane.
These are the simplest initial-value problems, yet their solution turns out to be
surprisingly complicated. The figures are the density contours of the solution of six
Riemann problems calculated by three different methods, developed by three differ-
ent methods, developed by three different teams [22], [14] and [13]. The numerical
results agree to a remarkable extent, down to small details.

This year marks the fiftieth anniversary of the death of von Neumann, without
doubt one of the most important and influential scientists of the first half of the
20th century. Some of his great contributions to mathematics and physics were
mentioned earlier. He invented game theory, a fundamental idea in economics. He
was also one of the creators of the modern computer and, less well known, one of
the founders of modern computational science and computational fluid dynamics
in particular.

During World War II, when von Neumann was working at Los Alamos, he real-
ized that analytical methods were inadequate for designing weapons and that the
only way to deal with such mathematical problems is to discretize the continuum
equations and solve the resulting finite system of equations numerically. The tools
needed to carry out such calculations effectively are high speed programmable elec-
tronic computers, large capacity storage devices, programming languages, a theory
of how to discretize partial differential equations, and a variety of algorithms for
solving rapidly the discretized equations. It is to these tasks that von Neumann de-
voted a large part of his energies in the last ten years of his life. He was keenly aware
that computational methods are crucial not only for designing weapons but also for
solving an enormous variety of scientific and engineering problems; understanding
the weather and climate particularly intrigued him.

But he also realized that computing can do much more than grind out by brute
force answer to concrete questions. In a lecture delivered in Montreal in 1945,
he concluded that “really high speed computing devices, in the field of partial
differential equations, as well as in many other fields which are now difficult or
entirely denied access, provide us with those heuristic hints which are needed in all
parts of mathematics for genuine progress.”

In precisely such a way did the numerical experiments of Kruskal and Zabusky
suggest the complete integrability of the Korteveg-De Vries equation. There is no
doubt that computer experimentation will become a way of life in most parts of
mathematical research. And there is no doubt that mathematics and physics will
continue to invigorate each other.
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Figure 6.
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Figure 7.
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Figure 8.
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Figure 9.
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Figure 10.
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Figure 11.
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[22] Riemann, B., Über die Fortpflanzung ebener Luftwellen von endlicher Schwingingsweite, 188–
207, Collected Papers, Springer Verlag, 1990.

[23] Schrödinger, E., Collected Papers on Wave Mechanics, Blackie and Son, Ltd., London, 1928.
MR0750301 (85k:01057)

[24] Schultz-Rinne, C. W., Collins, J. P., and Glaz, H. M., Numerical solution of the Rie-
mann problem for two-dimensional gas dynamics, SIAM J. Sci. Comp. 14 (1993), 1394–1414.
MR1241592 (94j:76062)

http://www.ams.org/mathscinet-getitem?mr=0006619
http://www.ams.org/mathscinet-getitem?mr=0006619
http://www.ams.org/mathscinet-getitem?mr=0237281
http://www.ams.org/mathscinet-getitem?mr=0237281
http://www.ams.org/mathscinet-getitem?mr=1316662
http://www.ams.org/mathscinet-getitem?mr=1316662
http://www.ams.org/mathscinet-getitem?mr=772434
http://www.ams.org/mathscinet-getitem?mr=772434
http://www.ams.org/mathscinet-getitem?mr=0522147
http://www.ams.org/mathscinet-getitem?mr=0522147
http://www.ams.org/mathscinet-getitem?mr=0194770
http://www.ams.org/mathscinet-getitem?mr=0194770
http://www.ams.org/mathscinet-getitem?mr=1491051
http://www.ams.org/mathscinet-getitem?mr=1491051
http://www.ams.org/mathscinet-getitem?mr=0555102
http://www.ams.org/mathscinet-getitem?mr=0555102
http://www.ams.org/mathscinet-getitem?mr=1511713
http://www.ams.org/mathscinet-getitem?mr=2304273
http://www.ams.org/mathscinet-getitem?mr=1555394
http://www.ams.org/mathscinet-getitem?mr=1618863
http://www.ams.org/mathscinet-getitem?mr=1512136
http://www.ams.org/mathscinet-getitem?mr=0778034
http://www.ams.org/mathscinet-getitem?mr=0778034
http://www.ams.org/mathscinet-getitem?mr=0131339
http://www.ams.org/mathscinet-getitem?mr=0131339
http://www.ams.org/mathscinet-getitem?mr=0036116
http://www.ams.org/mathscinet-getitem?mr=0036116
http://www.ams.org/mathscinet-getitem?mr=0750301
http://www.ams.org/mathscinet-getitem?mr=0750301
http://www.ams.org/mathscinet-getitem?mr=1241592
http://www.ams.org/mathscinet-getitem?mr=1241592


152 PETER D. LAX

[25] Schwartz, J., The pernicious influence of mathematics on science, in Logic, Methodology
and Philosophy of Science, Nagel, Suppes and Tarski, eds., Stanford University Press, 1962.
MR0166069 (29:3347)
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