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A Revolution in Mathematics? 
What Really Happened a Century 

Ago and Why It Matters Today
Frank Quinn

T
he physical sciences all went through 
“revolutions”: wrenching transitions in 
which methods changed radically and 
became much more powerful. It is not 
widely realized, but there was a similar 

transition in mathematics between about 1890 
and 1930. The first section briefly describes the 
changes that took place and why they qualify as a 
“revolution”, and the second describes turmoil and 
resistance to the changes at the time.

The mathematical event was different from 
those in science, however. In science, most of the 
older material was wrong and discarded, while 
old mathematics needed precision upgrades but 
was mostly correct. The sciences were completely 
transformed while mathematics split, with the core 
changing profoundly but many applied areas, and 
mathematical science outside the core, relatively 
unchanged. The strangest difference is that the 
scientific revolutions were highly visible, while 
the significance of the mathematical event is es-
sentially unrecognized. The section “Obscurity” 
explores factors contributing to this situation and 
suggests historical turning points that might have 
changed it.

The main point of this article is not that a revo-
lution occurred, but that there are penalties for 
not being aware of it. First, precollege mathemat-
ics education is still based on nineteenth-century 
methodology, and it seems to me that we will not 
get satisfactory outcomes until this changes [9]. 
Second, the mathematical community is adapted 
to the social and intellectual environment of the 
mid- and late twentieth century, and this environ-
ment is changing in ways likely to marginalize core 
mathematics. But core mathematics provides the 
skeleton that supports the muscles and sinews of 
science and technology; marginalization will lead 
to a scientific analogue of osteoporosis. Deliberate 

management [2] might avoid this, but only if the 
disease is recognized. 

The Revolution
This section describes the changes that took place 
in 1890–1930, drawbacks, objections, and why the 
change remains almost invisible. In spite of the 
resistance, it was incredibly successful. Young 
mathematicians voted with their feet, and, over the 
strong objections of some of the old guard, most of 
the community switched within a few generations. 
Contemporary Core Methodology
To a first approximation the method of science is 
“find an explanation and test it thoroughly”, while 
modern core mathematics is “find an explanation 
without rule violations”. The criteria for validity 
are radically different: science depends on com-
parison with external reality, while mathematics 
is internal.

The conventional wisdom is that mathematics 
has always depended on error-free logical argu-
ment, but this is not completely true. It is quite 
easy to make mistakes with infinitesimals, infinite 
series, continuity, differentiability, and so forth, 
and even possible to get erroneous conclusions 
about triangles in Euclidean geometry. When intui-
tive formulations are used, there are no reliable 
rule-based ways to see these are wrong, so in prac-
tice ambiguity and mistakes used to be resolved 
with external criteria, including testing against 
accepted conclusions, feedback from authorities, 
and comparison with physical reality. In other 
words, before the transition mathematics was to 
some degree scientific.

The breakthrough was development of a system 
of rules and procedures that really worked, in the 
sense that, if they are followed very carefully, then 
arguments without rule violations give completely 
reliable conclusions. It became possible, for in-
stance, to see that some intuitively outrageous 
things are nonetheless true. Weierstrass’s no-
where-differentiable function (1872) and Peano’s 
horrifying space-filling curve (1890) were early 
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examples, and we have seen much stranger things 
since. There is no abstract reason (i.e., apparently no 
proof) that a useful such system of rules exist, and 
no assurance that we would find it. However, it does 
exist and, after thousands of years of tinkering and 
under intense pressure from the sciences for sub-
stantial progress, we did find it. Major components 
of the new methods are: 

Precise definitions: Old definitions usu-
ally described what things are supposed 
to be and what they mean, and extrac-
tion of properties relied to some degree 
on intuition and physical experience. 
Modern definitions are completely self-
contained, and the only properties that 
can be ascribed to an object are those 
that can be rigorously deduced from the 
definition. 

Logically complete proofs: Old proofs 
could include appeals to physical in-
tuition (e.g., about continuity and real 
numbers), authority (e.g., “Euler did this 
so it must be OK”), and casual establish-
ment of alternatives (“these must be all 
the possibilities because I can’t imagine 
any others”). Modern proofs require each 
step to be carefully justified.

Definitions that are modern in this sense were de-
veloped in the late 1800s. It took awhile to learn to 
use them: to see how to pack wisdom and experi-
ence into a list of axioms, how to fine-tune them to 
optimize their properties, and how to see opportuni-
ties where a new definition might organize a body 
of material. Well-optimized modern definitions 
have unexpected advantages. They give access to 
material that is not (as far as we know) reflected in 
the physical world. A really “good” definition often 
has logical consequences that are unanticipated or 
counterintuitive. A great deal of modern mathemat-
ics is built on these unexpected bonuses, but they 
would have been rejected in the old, more scientific 
approach. Finally, modern definitions are more ac-
cessible to new users. Intuitions can be developed by 
working directly with definitions, and this is faster 
and more reliable than trying to contrive a link to 
physical experience.

Logically complete proofs were developed by 
Frege and others beginning in the 1880s, and by 
Hilbert after 1890 and (it seems to me) rounded out 
by Gödel around 1930. Again it took awhile to learn 
to use these: the “official” description as a sequence 
of statements obtained by logical operations, and so 
forth, is cumbersome and opaque, but ways were 
developed to compress and streamline proofs with-
out losing reliability. It is hard to describe precisely 
what is acceptable as a modern proof because the 
key criterion, “without losing reliability”, depends 
heavily on background and experience. It is clearer 

and perhaps more important what is not accept-
able: no appeals to authority or physical intuition, 
no “proof by example”, and no leaps of faith, no 
matter how reasonable they might seem. As with 
definitions, this approach has unexpected advan-
tages. Trying to fix gaps in first approximations to 
proofs can lead to conclusions we could not have 
imagined and would not have dared conjecture. 
They also make research more accessible: rank-
and-file mathematicians can use the new methods 
confidently and effectively, while success with 
older methods was mostly limited to the elite. 
Drawbacks
As mathematical practice became better adapted 
to the subject, it lost features that were important 
to many people. 

The new methodology is less accessible to non-
users. Old-style definitions, for instance, usually 
related things to physical experience so many peo-
ple could connect with them in some way. Users 
found these connections dysfunctional, and they 
can derive effective intuition much faster from 
precise definitions. But modern definitions have 
to be used to be understood, so they are opaque to 
nonusers. The drawback here is that nonusers only 
saw a loss: the old dysfunctionality was invisible, 
whereas the new opacity is obvious. 

The new methodology is less connected to phys-
ical reality. For example, nothing in the physical 
world can be described with complete precision, so 
completely rule-based reasoning is not appropri-
ate. In fact the history of science is replete with 
embarrassing blunders due to excessively deduc-
tive reasoning; see the section “Hilbert’s Missed 
Opportunities” for context and illustrations. Pro-
fessional practice now accommodates this through 
the use of mathematical models: mathematics 
applies to the model but no longer even pretends 
to say anything about the fit between model and 
reality. The earlier connection to reality may have 
been an illusion, but people saw it as a drawback 
that had to be abandoned. In the other direction, 
core mathematics no longer accepts externally 
verified (experimental) results as “known” because 
this would bring with it the same limitations on 
deductive reasoning that are necessary in science. 
Even the most seemingly minor flaw will sooner 
or later cause proof by contradiction and similar 
methods to collapse. In practice this led to a divi-
sion into “core” mathematics and “mathematical 
science”. For instance, if numerical approxima-
tions of fluid flow seem to reproduce experimental 
observations, then this could be taken as evidence 
that the approximation scheme converges. This 
conclusion does not have the certainty of modern 
proof and cannot be accepted as “known” in the 
core sense. However, it is a reasonable scientific 
conclusion and appropriate for mathematical sci-
ence. Similarly the Riemann hypothesis is incred-
ibly well tested. For scientific purposes it is a solid 
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fact, but it is unproved and remains dangerous for 
core use. Another view of this development is that, 
as mathematical methods diverged from those of 
science, mathematics divided into a core branch 
that separated from physical science in order to 
exploit these methods and a mathematical science 
branch that accepted the limitations in order to 
remain connected. The drawback here is that the 
new power in the core and the support it gives to 
applied areas are invisible to outsiders, whereas 
the separation from science is obvious. People 
wonder: is core mathematics a pointless academic 
exercise and mathematical science the real thing? 
Opposition
Henri Poincaré was the most visible and articulate 
opponent of the new methods; cf. [6]. He felt that 
Dedekind’s derivation of the real numbers from 
the integers was a particularly grievous conceptual 
error because it damaged connections to reality 
and intuitive understanding of continuity. Some 
of the arguments were quite heated; the graphic 
novel Logicomix [1] dramatically illustrates the 
turmoil (though it muddles the issues a bit). 
Scholarly works [3] are more dignified but give 
the same picture. 

As the transition progressed, the arguments 
became more heated but more confined. At the 
beginning traditionalists were deeply offended but 
not threatened. But because modern methods lack 
external checks, they depend heavily on fully reli-
able inputs. Older material was filtered to support 
this, and as the transition gained momentum some 
old theorems were reclassified as “unproved”, 
some methods became unacceptable for publica-
tion, and quite a few ways of looking at things were 
rejected as dangerously imprecise. Understand-
ably, many eminent late nineteenth-century math-
ematicians were outraged by these reassessments. 
These battles were fought by proxy, however. For 
instance, Poincaré’s monumental development of 
the theory of manifolds was quite intuitive, and we 
now know that some of his basic intuitions were 
wrong. But, in the early twentieth century, only a 
fool would have openly criticized Poincaré, and 
he could not respond to implicit reproaches. As a 
result the arguments usually concerned abstrac-
tions such as “creativity” and “understanding”, 
often in the context of education.

On a more general level, scientific concerns 
about the new methods were reasonable. The 
crucial importance of external reality checks in 
physics had been a hard-won lesson, and analo-
gous revolutions in biology and chemistry were 
still in progress (Darwin’s Origin of Species ap-
peared in 1859, and Mendeleev’s periodic table 
in 1869). How could mathematical use of the 
discredited “pure reason” approach possibly be 
a good thing? 

Most of the various schools of philosophy were, 
and remain, unconvinced by the new methods. 

Philosophers controlled words such as “reality”, 
“knowledge”, “infinite”, “meaning”, “truth”, and 
even “number”, and these were interpreted in ways 
unfriendly to the new mathematics. For example, 
if a mathematical idea is not clearly manifested in 
the physical world, how can it be “real”? And if it is 
not real, how can it have “meaning”, and how can it 
make sense to claim to “know” something about it? 
In practice mathematicians do find that their world 
has meaning and at least a psychological reality. If 
philosophy were a science, then this would qualify 
as a challenge for a better interpretation of “real”. 
But philosophy is not a science. The arguments are 
plagued by ambiguity and cultural and linguistic 
biases. “Validation” is mostly a matter of convic-
tion and belief, not functionality, so there are few 
mechanisms to correct or even expose the flaws. 
Thus, rather than refine the meaning of “reality” to 
accommodate what people actually do, philosophers 
split into Platonists and non-Platonists, depending 
on whether they believed mathematics fit their own 
interpretation. The Platonic view is hard to defend 
because mathematics honestly does not fit the usual 
meanings of “real” (see the confusion in Linnebo’s 
overview [5]). The non-Platonic view is essentially 
that mathematicians are deluded. Neither view is 
useful for mathematics. To make real progress math-
ematics had to break with philosophy and, as usual 
in a divorce, there are bad feelings on both sides.1

The precollege-education community was, and 
remains, antagonistic to the new methodology. One 
reason is that traditional mathematicians, most 
notably Felix Klein, were extremely influential in 
early twentieth-century educational reform. Klein 
founded ICMI [4], the education arm of the Interna-
tional Mathematical Union. His 1908 book Elemen-
tary Mathematics from an Advanced Viewpoint was 
a virtuoso example of nineteenth-century methods 
and did a lot to cement their place in education. The 
“Klein project” [4] is a contemporary international 
effort to update the topics in Klein’s book but has no 
plan to update the methodology.2 In brief, tradition-
alists lost the battle in the professional community 
but won in education. The failure of “new math” in 
the 1960s and 70s is taken as further confirmation 
that modern mathematics is unsuitable for children. 
This was hardly a fair test of the methodology be-
cause it was very poorly conceived, and many tra-
ditionalists were determined that it would succeed 
only over their dead bodies. However, the experience 

1There are exceptions, but I wonder whether many of these 
might not be instances of another thing seen in divorces: one 
partner remains in love with a fantasy assembled from the 
good times they had together. See the “Other Views” section 
in [7] for instances.
2For detailed explanation see the essay “Updating ‘Klein’s 
Elementary Mathematics from an Advanced Viewpoint’: 
Content only, or the viewpoint as well?” in [10].



34    NOTICES OF THE AMS VOLUME 59, NUMBER 1

reinforced preexisting antagonism, and opposition 
is now a deeply embedded article of faith. 

Many scientists and engineers depend on math-
ematics, but its reliability makes it transparent 
rather than appreciated, and they often dismiss 
core mathematics as meaningless formalism and 
obsessive-compulsive about details. This is a cul-
tural attitude that reflects feelings of power in their 
domains and world views that include little else, but 
it is encouraged by the opposition in elementary 
education and philosophy. 

In fact, hostility to mathematics is endemic in 
our culture. Imagine a conversation: 

A: What do you do?
B: I am a ———.
A: Oh, I hate that. 

Ideally this response would be limited to such oc-
cupations as “serial killer”, “child pornographer”, 
and maybe “politician”, but “mathematician” seems 
to work. It is common enough that many of us are 
reluctant to identify ourselves as mathematicians. 
Paul Halmos is said to have told outsiders that he 
was in “roofing and siding”!

Obscurity
Like most people with some exposure to history of 
mathematics, I knew about the “foundational crisis” 
that occurred roughly a century ago. However, my 
first inkling that something genuinely revolutionary 
happened came at an international conference on 
proofs in mathematics education.3 Sophisticated 
educators described proofs in ways that I did not 
recognize, while my description [8], based on an 
analysis of modern practice [7], was alien to them. 
The picture that emerged after a great deal of read-
ing and study is that these educators were basing 
their ideas on insightful analysis of professional 
practice up through the nineteenth century. They 
were not misunderstanding modern mathematics 
but correctly understanding pre-modern mathemat-
ics. The disconnect stems from a change in math-
ematics itself, a change of which they were unaware. 

No one is unaware of the scientific revolutions. 
The first subsection suggests that high-profile 
publicity had a lot to do with this, and obscurity of 
the mathematical transition is in a sense a public 
relations failure. To make this more concrete, the 
second section describes some public relations op-
portunities that Hilbert had but did not use. 
Proxies and Belief
Scientific revolutions were methodological, but it 
was conclusions that attracted attention. The Co-
pernican revolution, for instance, is known for the 
then-controversial conclusion that the earth orbits 
the sun, and the Darwinian revolution in biology is 
known for controversial conclusions about human 
origins. In both cases the real advances were meth-
odologies effective enough to make alternative

conclusions untenable, but methodology is com-
plex and technical. High-profile conclusions served 
as public proxies for the methodology. 

This proxy picture suggests several difficulties 
for mathematics. First, mathematical conclusions 
are not exciting enough to provide highly visible 
proxies. Second, conclusions used to promote 
mathematics are almost always applications to sci-
ence, medicine, and engineering. They are proxies 
for mathematical science and have raised visibility 
of these areas, not the core. For the core, these ef-
forts to use proxies may have actually backfired. 
Finally, when core results such as the Fermat con-
jecture or the Poincaré conjecture are described, 
it is—of necessity—in heuristic terms that are 
compatible with nineteenth-century viewpoints. 
The descriptions hide the crucial role of modern 
methodology, so they are not proxies for it. We will 
see that there are metamathematical conclusions 
that at one time might have served as proxies for 
modern methods, but they were not used. 

The science examples also suggest a problem 
with belief. Users adopt more effective methods, 
but nonusers often reject things they do not like 
(e.g., evolution) regardless of benefits to the techni-
cal community. Core methods such as completely 
precise definitions (via axioms) and careful logical 
arguments are well known, but many educators, 
philosophers, physicists, engineers, and many 
applied mathematicians reject them as not really 
necessary. There are cases in which physical sci-
ence has been unable to overcome rejection based 
on dislike, so even a very clear case for modern 
mathematics may not succeed. 
Hilbert’s Missed Opportunities
David Hilbert was the strongest and most highly 
visible proponent of the new methods during the 
transition, and as such he was frequently involved 
in controversies. I describe several situations in 
which Hilbert might have reframed debates and 
provided metamathematical proxies that could 
have led to a much clearer view today. The histori-
cal context is used to make the discussion more 
concrete, not to reproach Hilbert. After all, these 
opportunities are still just barely visible even with 
a century of hindsight. The first controversy oc-
curred early in Hilbert’s career and concerned his 
vigorous use of the “law of the excluded middle” 
(proof by contradiction). His response to the ob-
jections was that denying mathematicians use of 
this principle was “like denying boxers the use of 
their fists”; true but not a clear claim or challenge. 
If he had said the following, it would have caused 
an uproar:

Excluded-middle arguments are unreli-
able in many areas of knowledge, but 
absolutely essential in mathematics. 
Indeed we might define mathemat-
ics as the domain in which excluded-3ICMI Study 19, Taipei, May 2009.
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encapsulate years, if not centuries, of 
difficult experience, and newcomers can 
extract reliable and effective intuitions 
from them. Similarly, fully detailed argu-
ments can be formal and content-free, 
but fully confronting all details usually 
deepens understanding and often leads 
to new ideas. Fully detailed arguments 
also give fully reliable conclusions, and 
full reliability is essential for successful 
use of the powerful but fragile excluded-
middle method.

This would have acknowledged the dangers of 
formality but established reliability as a proxy for 
high-precision methodology and implicitly staked 
a claim to a nonphysical sort of meaning. Instead, 
Hilbert accepted the slanders by saying “math-
ematics is a game played according to certain rules 
with meaningless marks on paper.” Hilbert also 
suggested that these mathematical methods might 
be prototypes for similar developments in other 
sciences. Such things were in vogue at the time. Ar-
thur Conan Doyle, for instance, set his enormously 
popular Sherlock Holmes stories in a world where 
excluded-middle logic actually worked: 

…when you have eliminated the im-
possible, whatever remains, how-
ever improbable, must be the truth…
—The Sign of the Four, ch. 6 (1890) 

It was probably not widely known that this sort of 
logic led Doyle himself to a strong and expensive 
belief in fairies. Blondlot’s “N-ray” debacle in France 
around 1904 was not yet seen as a cautionary tale. 
Since then there have been quite a few embarrass-
ing failures due to excessively deductive reasoning 
in science. In the “cold fusion” episode in 1989, for 
instance, electrochemists Fleischmann and Pons ob-
served excess energy in some of their experiments. 
After eliminating electrochemical explanations, 
they deduced that the only alternative they could 
imagine—hydrogen fusion in the electrodes—must 
be the truth. This is a standard move in mathemat-
ics and in Doyle’s fiction, but bad science because 
there is no way to ensure that all alternatives have 
been imagined. Good scientific practice would have 
required them to test the fusion deduction, for 
instance by looking for the radiation that would 
have been a byproduct of fusion. Not seeing radia-
tion would have turned them back to interesting 
electrochemistry. Presumably they had stumbled 
on a previously unimagined way to make a battery, 
and it was releasing energy accumulated during 
earlier experiments. But their reliance on the power 
of deduction led instead to crashing ends to their 
careers and reputations. 

The modern view is that Hilbert’s proposal— that 
mathematical deduction might be a general pro-
totype for science—is a failure. His linkage ended 
up casting doubt on mathematical developments 

middle arguments are valid. Instead of 
debating whether or not it is true, we 
should investigate the constraints it 
imposes on our subject.

At the time mathematics was generally seen as 
an abstraction of physical reality, and it would 
have been outrageous to suggest that a logical 
technique should have higher priority in shaping 
the field. But in fact nothing physical can be de-
scribed precisely enough to make excluded-middle 
arguments reliable, and this as much as anything 
drove the division of mathematics. In applied 
areas these arguments continued to be tempered 
by wisdom and experience. In the core the link to 
reality became indirect, with modeling as an inter-
mediate, primarily to provide a safe environment 
for excluded-middle arguments. 

Such a statement would have redirected the de-
bate by making successful use of excluded-middle 
arguments a proxy for core methods. It would also 
have enabled the issue to be settled in a coherent 
way. As it was, this issue was a constant pain for 
Hilbert; Brouwer’s Intuitionist school kept it alive 
into the 1930s; and it died out more from lack of 
interest than any clear resolution.

Next, Hilbert’s axiomatic formulation of geom-
etry in 1899 precisely specified how points, lines, 
and so forth interacted, rather than specifying 
what they “were” and extracting the interactions 
from physical intuition. Hilbert himself pointed 
out that this disconnected mathematics from 
reality because one could interpret “point” as 
“chair” and the axioms would remain valid. Again 
this provoked objections. He might have pointed 
out that it is a powerful advantage to be able to 
use a single mathematical construct to model 
many physical situations. This would have made 
the disconnect a proxy for mathematics as an 
independent domain. Widespread acceptance of 
explicit modeling would then have carried with 
it acceptance of mathematical independence. As 
it happened, modeling became widespread in the 
professional community without being seen as 
having any such significance. 

Hilbert’s famous 1900 problems were powerful 
technical challenges that did a lot to drive devel-
opment of infinite-precision methods. However, 
the few that were actually seen as proxies for new 
ways of thinking (e.g., the second, on consistency 
of arithmetic) did not fare well, and the changes 
that the problems helped drive remained mostly 
invisible. 

Another debate concerned the use of axiomatic 
definitions and detailed logical arguments. These 
provoked strong objections about lack of reality 
and meaning, artificial rigidity, and content-free 
formal manipulation. Hilbert might have replied:

Axiomatic definitions can be artifi-
cial and useless, but they can also
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instead of justifying them. Meanwhile, very high 
reliability has been achieved in mathematics without 
drawing attention or having significance attached 
to it. The axiomatic-definition approach also made 
mathematics more accessible. A century ago original 
research was possible only for the elite. Today it is 
accessible enough that publication is required for 
promotion at even modest institutions, and an origi-
nal contribution can be required for a Ph.D. Again 
this is a profound change that had no significance 
attached to it. 

The final missed opportunity concerns disagree-
ments about knowledge, meaning, and “true”. 
By 1920 the search for secure foundations had 
bogged down in obscure philosophical arguments. 
Hilbert had proposed a precise technical meaning 
for “true”, namely, “provable from axioms that 
themselves could be shown to be consistent”. But 
ten years later Gödel showed that in the usual for-
mulation of arithmetic there are statements that 
are impossible to contradict but not provable in 
Hilbert’s sense. In particular, consistency of the sys-
tem could not be proved within the system. This was 
seen as a refutation of Hilbert’s proposal. Ironically, 
it had the same practical consequences because it 
established “impossible to contradict” as the precise 
mathematical meaning of “true”. Hilbert might have 
been explicit about deeper goals, for instance: 

Mathematics needs a precise definition 
of “true” that is internal and accessible 
to mathematical verification, and in 
particular unconstrained by philosophy 
or imagined connections to physical 
reality. We can worry about what such 
a definition “means” after it has been 
developed and shown to be successful 
in actual practice.

In this light Gödel’s work would have been seen 
as a successful modification rather than a refuta-
tion.4 Since that time a precise internal meaning for 
“true” has been enormously liberating for profes-
sional work, but its benefits have gone unnoticed.
Summary
The mathematical transition had such a low profile 
that no one understood its significance. Felix Klein 
was still denouncing the new methods in the 1920s, 
and because his views were not only unrefuted 
but almost unchallenged, outsiders accepted them 
as fact. Historians, educators, and philosophers 
went forward largely unaffected, propelled by the 

momentum of three thousand years and rebuffed 
by the technical complexity of modern practice. 

Strangely, mathematicians are also unaware 
that their field changed so profoundly. Newcom-
ers found philosophical arguments incomprehen-
sible and irrelevant, and philosophy went from a 
respectable pursuit to an object of ridicule and 
evidence of senility in just a few decades. But this 
replaced bad understanding with no understand-
ing at all. Mathematicians have joined fish and 
birds in doing something very well without any 
idea how! 

The Core at Risk?
For most of the twentieth century, mathematics 
was mainly supported in the higher educational 
system. Core mathematicians dominated this sys-
tem, so mathematics had a secure niche that did 
not depend on understanding what it was about. 
However, this niche is eroding, and the security 
is gone. 

A large-scale problem is that resource
constraints are eroding the ability of the higher 
education system to support basic research. There 
is pressure to increase instructional productivity 
by replacing researchers with teaching faculty at 
half the cost. Mathematics departments with large 
service loads are particularly vulnerable. There is 
also pressure to increase research productivity, 
with consequences discussed below.

There is a problem with external research fund-
ing. In the United States, external support for core 
mathematics comes almost exclusively from the 
National Science Foundation. A desire to have 
something to show for the money has led the NSF 
to want “wider impacts”, and the use of applica-
tions as proxies to promote mathematics has led 
to “applications” being the default interpretation 
of “wider impacts”. The result is a steady shift of 
funding toward applied areas (and education; see 
below). Because external funding is a major indica-
tor of productivity, a decline in NSF support for 
core activity has contributed to the decline in core 
activity in academic departments.

Yet another problem comes from changes in ap-
plied mathematics. Up through the late twentieth 
century, applied mathematicians were trained in 
mainstream graduate programs and had founda-
tions in modern methods and values. Today many 
are several generations removed from these core 
mathematical foundations. Many are scientists 
rather than mathematicians in the modern sense, 
and some are actually hostile to core methodol-
ogy. At the same time, demand from science and 
engineering and pressure for more highly visible 
research have caused many academic departments 
to shift toward applied areas. The result is cultur-
ally divided departments in which core mathemat-
ics is increasingly at a disadvantage.

4It is doubtful that either Hilbert or Gödel would have 
accepted this formulation. Both felt that the core axioms 
of mathematics should be “concrete intuitions”, an extra-
mathematical criterion. Their interpretations of “finitistic” 
were also less well defined and less internal than those used 
today; see Tait [11]. In these ways Hilbert and Gödel were 
still not fully modern.
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This is philosophically attractive and “easy” but 
follows the historical pattern (see the discussion in 
“Drawbacks”) of being dysfunctional for most stu-
dents. If we want students to be able to actually use 
fractions, then core experience points a way: use a 
precise definition that looks obscure at first but that 
can be internalized by working with it and that is far 
more effective once it is learned. Such an approach 
is suggested in [9] and elaborated in some of the 
essays in [10]. Similarly, in [8] I explain how a care-
ful understanding of the nature of modern proofs 
might improve success even with arithmetic. (These 
are detailed and specific illustrations but are given 
as starting points rather than “classroom ready”).

The big question is: Can any version of these 
approaches be used by real children? Children are 
attracted to rule-based reasoning (think games), and 
rich applications and success downstream should 
more than compensate for initial obscurity. I sus-
pect that it is a bigger challenge for educators to 
think this way than it is for children. The starting 
point would be to acknowledge the significance of 
the mathematical revolution a century ago and to 
see the new methods—properly understood—as 
profoundly rich resources rather than alien threats. 
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The final problem concerns the disconnect 
between school mathematics and higher educa-
tion. School mathematics is still firmly located in 
the nineteenth century, so student success rates 
in modern courses have been very low. There is a 
great deal of pressure to improve this situation, 
but recent changes, such as use of calculators 
and emphasis on vague understanding over skills, 
have actually worsened the disconnect. Something 
has to change. Ideally, school mathematics could 
be brought into the twentieth century. Unfortu-
nately the K–12 education community is better 
organized, more coherent, and far more powerful 
politically. External funding agencies are commit-
ted to the K–12 position. At the NSF this means 
funds have shifted from research to educational 
programs that are actually hostile to the research 
methodology. It seems possible that the K–12/
college articulation will be “improved” by forcing 
higher education to revert to nineteenth-century 
models.

The point in all these examples is that the na-
ture of modern core mathematics must be much 
better understood to even see the problems. And 
if the problems are not recognized and addressed 
quickly, then—in the United States anyway—core 
mathematics may well be marginalized, and the 
mathematical Golden Age that began in the twen-
tieth century will end in the twenty-first. 

The big question is: Why would marginalization 
of the core be a problem, if one is not particularly 
interested in the subject itself? In fact, core math-
ematics provides a rigid skeleton that supports 
the muscles of science, engineering, and applied 
mathematics. It is relatively invisible because it 
cannot interact directly with the outside world; it 
grows slowly; and it would not cause immediate 
problems if it stopped growing. Premodern math-
ematics and contemporary mathematical science, 
on the other hand, are more like exoskeletons: 
in direct contact with reality but putting strong 
constraints on size and power. The long-term 
consequence of mathematical osteoporosis is that 
science would have to go back to being a bug!

Solutions for Education?
The point briefly addressed here5 is that mod-

ern methods were adopted because they are much 
more effective at advanced levels. If the reasons 
for their success are clearly understood, then some 
of these methods might be adaptable to elemen-
tary levels. This is the meaning of “brought into 
the twentieth century” in the discussion above, and 
at the very least it would improve K–12/college 
articulation. But it might do far more.

To be specific, consider fractions. Currently 
these are introduced in the old-fashioned way, 
through connections with physical experience. 

5And at great length in [9] and [10].


